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A Comment on Early-Time Solutions 
of the Smoluchowski Equation 

Moshe Gitterman 1'2 and George H. Weiss ~ 
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We present a simple derivation of classes of early-time solutions of the 
Smoluchowski equation in the presence of boundaries, simplifying and 
generalizing an analysis by van Kampen. 
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In a recent paper, motivated by applications to nucleation theory, van 
Kampen  (1) has presented an approximation,  valid at sufficiently early 
times, to the solution of a Smoluchowski equation. Specifically, he 
considered a one-dimensional Smoluchowski equation of the form 

ap _a:p a 
-g  = z) -~x~ + ~ [ u '  ( x ) p ] (1) 

where D is a diffusion constant  and U(x) is a two-body potential function. 
The probability density function p(x,  t I Xo) is the solution to this equation 
subject to the initial condition p(x,  O l x o ) = 6 ( X - X o ) .  The essence of 
van Kampen 's  paper is contained in a derivation of an approximation to 
p(x,  t Ix0) valid at sufficiently early times. In this note we present a simpler 
version of the proof, later extending it to the more general equation 

[ ap_ a D(x)  [ v ( x ) p ]  (2) 
at ax axJ  ax 
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Our derivation is based on the asymptotic properties of eigenfunctions and 
eigenvalues of Sturm-Liouville equations/2~ 

Let us first reproduce the van Kampen result and afterward discuss 
the extension to Eq. (2). We assume that the interval over which the 
diffusion process occurs is (0, L), where at least one of the endpoints is a 
trapping point. A solution to Eq. (1) is equivalent to solving a Schr6dinger 
equation, as may be seen by separating variables and writing 

p( x ,  t l Xo ) = e - Z' e - uIx )/2~ qo( x ) (3) 

We infer from this that ~0(x) can be chosen as the normalized solution to 
the eigenvalue equation 

Dq~"(x) + [2 - w(x)] q~(x) = 0 (4) 

where w ( x )  is found in terms of the potential as 

[ U'(x)] 2 U"(x) 
w(x) - (5) 

4D 2 

A formal expansion for p(x ,  t Ix0) in terms of eigenfunctions is then 

p(x ,  t l Xo) = e -  i v ( x , -  v(.~o)]/2o ~ e-X"'q~,(Xo) ~0,(x) 
n = O  

(6) 

in which the 2's are arranged in ascending order. The early-time behavior 
of p(x ,  t l Xo) will be influenced only by the behavior of the 2, and r in 
the limit of large n. The proof in ref. 2 is trivially extended to allow for the 
analysis of any homogeneous boundary condition, since the idea is that 
when 2>> 1 in Eq. (4) the term w ( x )  is negligible in comparison with 2. 
Van Kampen considered the case in which x = 0 is a reflecting point and 
x = L is a trap, allowing us to write 

rt2D( 1) 2 
,l.=-Z- r , ,+~ +o(1)  

z- j 

(7) 

in the large-n limit. Although 
function w(x), corrections to 
function. 

these approximations are independent of the 
these asymptotic results will depend on this 
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On inserting the lowest order terms in Eq. (7) into the expansion in 
Eq. (6) and, consistent with this replacement, changing the sum to an 
integral, we find 

1 [ U(x)- U(Xo) (x-x_o) ~] 
p(x, t lxo) (4rcDt)ll2 exp - 2D 4Dt J (8) 

at early times. The probability density for the first passage time to the trap 
at x = L can be calculated from 

f(tlxo)= -D~x x x=t. L-xo - ( L ~ x o )  2] 2(4rtDt3)mexp I -  U(L)}-DU(X~ 4D, J (9) 

where we have neglected a term proportional to U'(L)/(2D) in comparison 
to (L-  Xo)Z/(4Dt) because of the assumption of early times. The expression 
in this last equation coincides with the result found by van Kampen. 

Let us next consider the modification of this theory required to take 
into account a nonconstant diffusion constant as in Eq. (2). In this case 
a separation of variables of the solution to Eq. (2) as p(x, t lxo)= 
X(x)exp(-).t) leads to an eigenvalue equation for X(x) which may be 
written as 

[D(x) X ' ] ' -  [v(x)X]' + 2X= 0 (10) 

This does not have the form of a Sturm-Liouviile equation, but can be 
transformed into one for a function Y(x) which is defit|ed in terms of X(x) 
by 

f r" v(y) X ( x ) = e x p ~ j  ff(-~) dy) Y(x)=A(x) Y(x) (11) 

where A(x) denotes the exponential term that is shown. The function Y(x) 
is readily shown to satisfy the Sturm-Liouville equation 

[A(x) O(x) Y'(x)] '  + 2A(x) Y(x)=0 (12) 

For  convenience we define a function g(x) = A(x) D(x), which is seen to be 
nonnegative. In the following exposition we will assume that it is, in fact, 
a strictly positive function. 

For the sake of concreteness we will suppose that x = 0 and x = L are 
trapping points.and that D(x) and v(x) are continuous in the interval 
(0, L). The presence of these trapping points requires that Eq. (10) be 
solved subject to the boundary conditions 

X(O)=X(L)=O (13) 
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or Y(0)= Y(L)= 0. Our consideration of this particular set of boundary 
conditions represents no real restriction, since similar results can be derived 
for any linear homogeneous boundary conditions which generate an 
eigenvalue problem. The motivation of the following proof lies in the 
observation that the behavior of the solution to Eq. (2) at early times is 
mainly determined by the large eigenvalues together with their associated 
eigenfunctions. 

One can estimate these functions using theoretical results discussed in 
ref. 2. A first step in their argument requires the transformation of Eq. (5) 
to an equivalent equation having the form 

d2F 
d~ 2 + [2-r(~)]r=O (14) 

where ~ is a new spatial coordinate and F(~) a new dependent variable. 
These are defined in terms of g(x) and A(x) by the relations 

x(Aiz l )  ',2 
r \ - ~ j  dz, F(~)= [A(r g(~)],/4 y(~) (15) 

and the function r(~) that appears in Eq. (14) has the form 

{ [A(~) g(~)] 1/4 },, 
r(r  [A(~) g(~)]'/ '  (16) 

This function is not really needed in a derivation of the lowest-order 
approximation, but is required to calculate corrections to that approxima- 
tion. The maximum value of the coordinate ~ will be denoted by r which 
is found from Eq. (15) by setting x = L. Large-n approximations to 2 and 
F are found, as before, by neglecting the term r(~) in Eq. (14). The 
resulting set of eigenvalues and normalized eigenfunctions that satisfy the 
boundary conditions take the form 

~2 
2 =n2_z_r+O(1)_ ~o~ -,L, +o(1) 

(17) 

sin - -  + 0  - -  = ~ o ~ ~  

Correction terms can be generated from the integral equation which forms 
the starting point of the analysis given in ref. 2. In the early-time regime we 
may approximate to the complete solution of Eq. (2) by the series 

P(~,tl~o)~ ,,=,~ exp - n ~ ,  t s i n f - - / s m \  ~ , , j  \ - -~- j  (18) 
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where x and Xo have been replaced by ~ and ~o as indicated by the 
transformation in Eq. (15). 

The expansion in Eq. (18) can be identified with the solution to an 
ideal field-free diffusion equation (that is, one having a constant diffusion 
coefficient). The early-time approximation to p(~, tl~o) is again found by 
replacing the sum over n in Eq. (18) by an integral, which gives 

1 (e -Ir ~~162162176 (19) 
P(~, t l~o)= (4nt)l/2 

The probability density function for the first passage time to the trap at 
= r is defined in terms of the flux through that point as in Eq. (9). The 

result of the calculation is, to lowest order, 

E I% o,2] f ( t  ~o)= (4nt3)1/2 exp (20) 

Similar expressions are easily derived for other common boundary 
conditions (e.g., reflecting or radiation). The only effect of changing the 
boundary conditions is to change the form of tpt,~162 to some other form 
of sinusoid, as exemplified by Eqs. (8) and (9). 

Corrections to the lowest-order approximations can be found by 
iterating the integral equations given in ref. 2, but this seems not to have 
been implemented, possibly because the subsequent calculations become 
quite complicated. However, there is some motivation to carrying out such 
an analysis because it might provide information about the range of time 
over which an expansion such as that in Eq. (18) might be expected to be 
accurate. It is presumably possible to extend our analysis to Smoluchowski 
equations in higher dimensions, but the results would necessarily be 
restricted to shapes for which the eigenfunctions are of a reasonably simple 
form. 
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